第284章 围巾(1 / 2)

离语 semaphore 1525 字 1个月前

Weaviate 是一个向量搜索引擎数据库,它专注于连接和管理分散的数据,并通过语义链接来</p>

解析和查询这些数据。它的主要功能包括语义搜索、数据链接和知识图谱构建。Weaviate 的关键</p>

特性包括机器学习集成,支持多种相似度度量,如欧氏距离和余弦相似度,以及可扩展性。</p>

Weaviate 的主要用途是帮助开发者构建智能应用程序,利用其强大的语义搜索和数据关联功能</p>

从而实现更智能、更个性化的数据检索和推荐。其特点包括开源、高度可扩展、语义搜索功能强</p>

大、支持多种数据类型和格式等。这使得 Weaviate 在处理大规模复杂数据集时表现出色,特别适</p>

用于智能问答、搜索引擎和图像识别等领域。</p>

本章介绍了向量知识库在信息检索和数据管理中的具体优势,随后介绍了向量知识库的构建,</p>

是提取分割文本,嵌入向量,随后构成向量知识库。给出了 embedding 的原理以及给出了使用</p>

embedding API 将数据变成向量的代码示意,经过向量化的数据,将其存入 Pipecone,后将数据</p>

库与 Weaviate 相连,完成语义搜索、数据链接和知识图谱构建</p>

术是一种结合了检索和生成机制的深度学习框</p>

架,用于增强语言模型的性能,尤其适合于构建特定领域的专业大模型。这一技术通过从大规模知</p>

识库检索相关信息,然后将这些信息融入生成过程中,来生成更准确、更丰富的响应。本节将详细</p>

阐述如何使用 RAG 技术基于通用大模型搭建电力生命周期评估(LCA)领域的专业大模型。</p>

RAG 技术核心在于将传统的语言生成模型与信息检索系统结合起来。这种结合不仅使模型能够</p>

生成语言,还能从大量的文档中检索到具体的事实和数据,从而提供更加精确和详细的生成内容。</p>

RAG 的工作流程大致可以分为以下几步:</p>

查询生成:根据输入,如一个问题或提示,生成一个查询。</p>

文档检索:使用生成的查询在知识库中检索相关文档或信息。</p>

内容融合:将检索到的信息与原始查询融合,形成新的、丰富的输入。</p>

答案生成:基于融合后的输入,使用语言生成模型生成最终的文本输出。</p>

先前已经构建好了针对电力 LCA 领域的专业大模型,但是缺少检验模型的手段,即缺少模型优</p>

化环节,本项目设置通过 Chatbot 模式,通过与用户进行问答的形式,检验模型是否能调用电力行</p>

业 LCA 领域向量数据库回答该领域专业性问题和时效性问题的有效性。</p>

Chatbot 模式的测试不仅可以验证模型的知识覆盖范围和答案的准确性,还可以评估模型的用</p>

户交互能力。这种测试模拟真实用户与模型的交互,可以揭示模型在理解和生成回应方面的潜在问</p>

题。</p>